700 Series Thermal Switch
High Reliability

Qualified to NASA-Goddard Specifications:
- **S-311-641**, "Switches, Thermostatic, General Requirements" and
- **S-311-641/03**, "Switch, Thermostatic, Corrosion Resistant Steel, Hermetic"
- **S-311-641/04**, "Switch, Thermostatic, Bimetallic, SPST, High Power, Hermetic, Detail Specification"

Honeywell’s 700 Series High-Reliability Thermal Switch is the result of years of meticulous engineering and a relentless path of continuous improvement. Discriminating designers have specified them from the earliest unmanned satellites to today’s most modern manned and unmanned space vehicles.

The product line continues to evolve with the addition of many new standard configurations. The breadth of offerings allows users to select any number of off-the-shelf designs. This saves engineering resources by eliminating the need for customer specifications and non-recurring engineering. Recent design improvements have led to even greater reliability and temperature stability.

These high-reliability switches receive an extensive battery of screening tests, thus assuring customers a product with the highest degree of workmanship and reliability. They meet or exceed the requirements set forth in MIL-PRF-24236/1, Type I, Class 4. Residual gas analysis and Group B testing are performed on every production lot. Upon testing and inspection Honeywell serializes each switch and completes an individual data sheet containing the acceptance test data.

No matter what your high-reliability application may be, Honeywell has the right solution for your system.

Application Examples
- Propulsion Lines
- Electronics compartment temperature control
- Cold plate temperature monitoring and control
- Optics and instrumentation temperature control
- Surface and strip heater control
- Battery charge rate and heater control
- Rocket motors and thrusters
- Overheat protection
- Electric motor pre-heater control
- Hydraulic/pneumatic actuator freeze protection systems
- Environmental control system limit indication and control
- System Fail Safe

Features
- All welded stainless steel construction
- 1000 cycles of run-in while monitoring contact resistance, 50 milliohms max, missed cycle detection
- Residual Gas Analysis and Group B Testing
- Able to withstand high vibration and shock levels
- Push to Open snap-action contact operation
- Meets or exceeds requirements of S-311-641/03
- Stainless and super Alloy Construction
- Internal cleanliness 100% verified by micro-particle analysis
- Each switch serialized and shipped with individual test data sheet
- Low contact resistance: 25 milliohms maximum
- Hermetically sealed & backfilled with dry Nitrogen & 10% Helium tracer

Specifications for 700 Series Thermal Switch

<table>
<thead>
<tr>
<th>Performance Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Arrangement</td>
<td>SPST</td>
</tr>
<tr>
<td>Contact Ratings</td>
<td></td>
</tr>
<tr>
<td>5 amperes resistive load at 28 VDC for 100,000 cycles</td>
<td></td>
</tr>
<tr>
<td>2 amperes resistive load at 115 VAC RMS for 2,000,000 cycles</td>
<td></td>
</tr>
<tr>
<td>1.0 ampere inductive load (0.02) at 28 VDC, 115 VAC RMS for 100,000 cycles</td>
<td></td>
</tr>
<tr>
<td>1.0 ampere resistive load at 28 VDC 1,000,000</td>
<td></td>
</tr>
<tr>
<td>1.0 ampere resistive at 120 VDC for 250,000 cycles</td>
<td></td>
</tr>
<tr>
<td>Dielectric Withstanding Voltage</td>
<td>1250 VAC RMS - terminals to case, 500 microamperes maximum leakage</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>500 megohms minimum at 500 VDC - terminals to case</td>
</tr>
</tbody>
</table>
Environmental (MIL-STD-202)

<table>
<thead>
<tr>
<th>Test</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration (Sine)</td>
<td>Method 204, 50g to 2000 Hz, 30g to 2500 Hz</td>
</tr>
<tr>
<td>Vibration (Random)</td>
<td>Method 214, over 30g RMS, 20 to 2000 Hz</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>-183°F to 400°F (-201° to +204°C)</td>
</tr>
<tr>
<td>Moisture Resistance</td>
<td>Method 106, 240 hours, 90-98% RH, and from +77°F to +149°F (+25°C to 65°C)</td>
</tr>
<tr>
<td>Hermetic Seal</td>
<td>Method 112, Cond. C, Procedure IV, 1.0 x 10^-8 Atm, cc/sec max leak rate</td>
</tr>
<tr>
<td>Solderability</td>
<td>Method 208</td>
</tr>
<tr>
<td>Shock</td>
<td>Method 213, 100g/6ms, 750g/0.5ms</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>Method 107, Condition B, -120°F to +257°F (-49°C to 125°C)</td>
</tr>
<tr>
<td>Acceleration</td>
<td>Method 212, Condition A, 30g</td>
</tr>
<tr>
<td>Salt Spray</td>
<td>Method 101, Condition B, 48 hours</td>
</tr>
</tbody>
</table>

NOTE: The 700 Series thermal switches have been qualified to the requirements of Military Specification MIL-PRF-24236, titled "Switches, Thermostatic, General Specification For," for Type I, Class 4 devices.

Acceptance Test Data

<table>
<thead>
<tr>
<th>Test</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact resistance monitored burn-in</td>
<td>1,000 cycles min, 50 mΩ max</td>
</tr>
<tr>
<td>Random vibration</td>
<td>22.7g RMS</td>
</tr>
<tr>
<td>Particle impact noise detection (PIND)</td>
<td>No particle noise</td>
</tr>
<tr>
<td>Calibration/setpoint</td>
<td>3 cycles, 1°F min/max</td>
</tr>
<tr>
<td>Creepage (ARC duration)</td>
<td><5 msec, 600 VDC, 1°F min/max</td>
</tr>
<tr>
<td>Seal: fine leak</td>
<td>≤1 x 10^-8 Atm. cc/sec, No bubbles</td>
</tr>
<tr>
<td>gross leak</td>
<td></td>
</tr>
<tr>
<td>Contact resistance - 3 cycles</td>
<td>25 milliohms max (6 VDC, .1A)</td>
</tr>
<tr>
<td>Weight</td>
<td>Varies by configuration</td>
</tr>
<tr>
<td>Dielectric withstanding voltage - Terminals to case</td>
<td>1250 VAC RMS, 60 Hz</td>
</tr>
<tr>
<td>Insulation Resistance - Terminals to case</td>
<td>500 megohms min, 500 VDC</td>
</tr>
<tr>
<td>Inspection of product</td>
<td>Final visual</td>
</tr>
</tbody>
</table>

Sample Ordering Code

Once written, your ordering code becomes the specific part number, as the following example illustrates:

Configuration shown in drawing
Space rated
Lower temperature setpoint at 40°F
A = Open on temperature rise
B = Close on temperature rise
Upper temperature setpoint at 60°F
Special Feature (see following "Special Feature List")
Special Physical Feature (Unit 7, see "Configuration Drawings") .375 Stud Length

- Standard temperature tolerance is ±5°F on opening and closing temperature. Unless otherwise specified, minimum differential is 8°F.

EXAMPLE OF SPECIAL FEATURES. CONSULT FACTORY FOR SPECIFIC APPLICATION

<table>
<thead>
<tr>
<th>UNIT #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>702</td>
<td>S</td>
<td>040</td>
<td>A</td>
<td>060</td>
<td>A</td>
<td>/C</td>
</tr>
</tbody>
</table>

ORDERING CODE (UNIT 7A) | LEAD WIRE MIL-SPEC
A | M22759/43-22-9
B | M22759/43-20-9

ORDERING CODE (UNIT 7B) | TUBING ADAPTER MOUNTING ANGLE (±10°)
1 | 0° (Lead Wires Parallel to Tube Direction)
2 | 45
3 | 90° (Lead Wires Perpendicular to Tube Direction)
4 | 135

ORDERING CODE (UNIT 7C) | OTHER OPTIONS
Z | LESS STRAP AND SHIPPING TUBE
Y | LESS STRAP AND SHIPPING TUBE. WITH WIRE TIE FEATURE ON TUBING ADAPTER
UNIT 6: Non-standard tolerances may also be defined by the ordering code by using a '/' separator.
For example: 701S133A155/4/4/8 specifies ±4°F tolerance on UNIT 3 temperature, ±4°F tolerance on UNIT 5 temperature, and 8°F minimum differential.

A Setpoint tolerances are min-max. Differential shall be 8°F min.
B Opening setpoint is min or max.
C Closing setpoint is min or max.
D Opening setpoint is ±5° with 8° to 18° differential. Closing setpoint given is min or max possible.
E Closing setpoint is ±5° with 8° to 18° differential. Opening setpoint given is min or max possible.
F Closing setpoint is ±4°F with 11 to 19°F differential. Opening setpoint is min or max possible.
G Opening and closing setpoints are ±3°F.
H Opening and closing setpoints are ±4°F.
I Opening and closing setpoints are ±5°F.
J Opening and closing setpoints are ±5°F.
K Closing setpoint is ±2°F. Opening setpoint is min or max.
L Opening setpoint is min or max.
M Closing setpoint is ±3°F. Opening setpoint given is min or max possible.
N Closing setpoint is ±4°F. Opening setpoint given is min or max possible.
O Opening and closing setpoints are Min-Max. Differential shall be 10°F Min.
P Opening and closing setpoints are Min-Max. Differential shall be 10°F Min.
Q Opening and closing setpoints are ±4°F.
R Closing setpoint is ±4°F. Opening setpoint given is min or max possible.
S Opening and closing setpoints are ±6°F. Differential shall be 10°F Min.
T Closing setpoint is ±3°F. Opening setpoint given is min or max possible.
U Opening and closing setpoints are ±6°F. Specify minimum differential (example: U/8).
V Opening setpoint is min or max. Specify closing tolerance and minimum differential (example: V/5/8).
W Opening setpoint is min or max. Specify opening tolerance and minimum differential (example: W/5/8).

Tolerance Limits (Consult Factory for Non-standard Limits)

<table>
<thead>
<tr>
<th>Specified Temp Setpoint Range</th>
<th>Standard Setpoint Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F (°C)</td>
<td>°F (°C)</td>
</tr>
<tr>
<td>-120 to 0 (-84.4 to -17.8)</td>
<td>±6 (3.3)</td>
</tr>
<tr>
<td>+1 to 250 (-17.2 to 121.1)</td>
<td>±5 (2.8)</td>
</tr>
<tr>
<td>251 to 300 (121.7 to 148.9)</td>
<td>±7 (3.9)</td>
</tr>
</tbody>
</table>

Configuration Drawings (dimensions in inches)

All configurations shown are available with upright terminals.
For option selection consult factory.