RDR-4000M
3D Weather Radar
for the C-130 transport aircraft

RDR-4000M
Industry-leading 3D volumetric weather radar technology optimized for military operations with High-Resolution Ground Mapping (HRGM) and sectored skin paint modes.

Safety
First Radar
Certified to the FAA Enhanced Turbulence Minimum Operating Performance Standards (MOPS)
Advanced, forward-looking weather detection and avoidance capability
- Improved turbulence identification
- Detects hazards along flight path
- Look ahead function when maneuvering

Safety
50% Reduction in Turbulence Related Incidents
Based on In-Service Data, Compared to Aircraft Equipped with Conventional Radars
- Predictive Windshear Detection and Alerting
- Reduces Hazardous Weather False Alarms
- More Effective Routing and Rerouting Decisions

Value
Lower Fuel Costs
- >30% Weight Reduction Over Existing Military Radars
 Lower system-installed weight reduces mission fuel consumption

Value
Reduced Maintenance Costs
- +80% Increase Mean Time Between Unscheduled Removal (MTBUR)
 - Reduces Unit Removals
 - Minimizes Spares
 - Decreases Operational Delays

Value
8000+ Hours Mean Time Between Failure
System uses direct drive, DC brushless mechanical drive with coaxial rotary joints, and a solid-state transmitter design to improve operational uptime.

Efficiency
Only Radar That Automatically Scans All of the Weather, All the Time
RDR-4000M features automated weather detection to display significant weather without requiring pilots to make tilt adjustments
- Reduces Pilot/Navigator Workload
- Improves Safety by Expanding Situational Awareness Time
- Field Tested and Combat Proven (C-17)

Efficiency
26% Improvement
In Weather Avoidance Decision-Making Ability to Detect and Reroute Around Storms Sooner (relative to previously available systems)
- Enhanced Strategic Maneuvering
- More Efficient and Quicker Flight Rerouting
- Reduces Delays, Turn Backs and Diversions

Value
First Radar
Certified to the FAA Enhanced Turbulence Minimum Operating Performance Standards (MOPS)
Advanced, forward-looking weather detection and avoidance capability
- Improved turbulence identification
- Detects hazards along flight path
- Look ahead function when maneuvering

Value
Lower Fuel Costs
- >30% Weight Reduction Over Existing Military Radars
 Lower system-installed weight reduces mission fuel consumption

Value
Reduced Maintenance Costs
- +80% Increase Mean Time Between Unscheduled Removal (MTBUR)
 - Reduces Unit Removals
 - Minimizes Spares
 - Decreases Operational Delays

Value
8000+ Hours Mean Time Between Failure
System uses direct drive, DC brushless mechanical drive with coaxial rotary joints, and a solid-state transmitter design to improve operational uptime.

Honeywell
RDR-4000M
3D Weather Radar
for the C-130 transport aircraft

RDR-4000M
Industry-leading 3D volumetric weather radar technology optimized for military operations with High-Resolution Ground Mapping (HRGM) and sectored skin paint modes.

Safety
First Radar
Certified to the FAA Enhanced Turbulence Minimum Operating Performance Standards (MOPS)
Advanced, forward-looking weather detection and avoidance capability
- Improved turbulence identification
- Detects hazards along flight path
- Look ahead function when maneuvering

Safety
50% Reduction in Turbulence Related Incidents
Based on In-Service Data, Compared to Aircraft Equipped with Conventional Radars
- Predictive Windshear Detection and Alerting
- Reduces Hazardous Weather False Alarms
- More Effective Routing and Rerouting Decisions

Value
Lower Fuel Costs
- >30% Weight Reduction Over Existing Military Radars
 Lower system-installed weight reduces mission fuel consumption

Value
Reduced Maintenance Costs
- +80% Increase Mean Time Between Unscheduled Removal (MTBUR)
 - Reduces Unit Removals
 - Minimizes Spares
 - Decreases Operational Delays

Value
8000+ Hours Mean Time Between Failure
System uses direct drive, DC brushless mechanical drive with coaxial rotary joints, and a solid-state transmitter design to improve operational uptime.

Efficiency
Only Radar That Automatically Scans All of the Weather, All the Time
RDR-4000M features automated weather detection to display significant weather without requiring pilots to make tilt adjustments
- Reduces Pilot/Navigator Workload
- Improves Safety by Expanding Situational Awareness Time
- Field Tested and Combat Proven (C-17)

Efficiency
26% Improvement
In Weather Avoidance Decision-Making Ability to Detect and Reroute Around Storms Sooner (relative to previously available systems)
- Enhanced Strategic Maneuvering
- More Efficient and Quicker Flight Rerouting
- Reduces Delays, Turn Backs and Diversions

Value
First Radar
Certified to the FAA Enhanced Turbulence Minimum Operating Performance Standards (MOPS)
Advanced, forward-looking weather detection and avoidance capability
- Improved turbulence identification
- Detects hazards along flight path
- Look ahead function when maneuvering

Value
Lower Fuel Costs
- >30% Weight Reduction Over Existing Military Radars
 Lower system-installed weight reduces mission fuel consumption

Value
Reduced Maintenance Costs
- +80% Increase Mean Time Between Unscheduled Removal (MTBUR)
 - Reduces Unit Removals
 - Minimizes Spares
 - Decreases Operational Delays

Value
8000+ Hours Mean Time Between Failure
System uses direct drive, DC brushless mechanical drive with coaxial rotary joints, and a solid-state transmitter design to improve operational uptime.

Honeywell
RDR-4000M
3D Weather Radar
for the C-130 transport aircraft

RDR-4000M
Industry-leading 3D volumetric weather radar technology optimized for military operations with High-Resolution Ground Mapping (HRGM) and sectored skin paint modes.

Safety
First Radar
Certified to the FAA Enhanced Turbulence Minimum Operating Performance Standards (MOPS)
Advanced, forward-looking weather detection and avoidance capability
- Improved turbulence identification
- Detects hazards along flight path
- Look ahead function when maneuvering

Safety
50% Reduction in Turbulence Related Incidents
Based on In-Service Data, Compared to Aircraft Equipped with Conventional Radars
- Predictive Windshear Detection and Alerting
- Reduces Hazardous Weather False Alarms
- More Effective Routing and Rerouting Decisions

Value
Lower Fuel Costs
- >30% Weight Reduction Over Existing Military Radars
 Lower system-installed weight reduces mission fuel consumption

Value
Reduced Maintenance Costs
- +80% Increase Mean Time Between Unscheduled Removal (MTBUR)
 - Reduces Unit Removals
 - Minimizes Spares
 - Decreases Operational Delays

Value
8000+ Hours Mean Time Between Failure
System uses direct drive, DC brushless mechanical drive with coaxial rotary joints, and a solid-state transmitter design to improve operational uptime.

Efficiency
Only Radar That Automatically Scans All of the Weather, All the Time
RDR-4000M features automated weather detection to display significant weather without requiring pilots to make tilt adjustments
- Reduces Pilot/Navigator Workload
- Improves Safety by Expanding Situational Awareness Time
- Field Tested and Combat Proven (C-17)

Efficiency
26% Improvement
In Weather Avoidance Decision-Making Ability to Detect and Reroute Around Storms Sooner (relative to previously available systems)
- Enhanced Strategic Maneuvering
- More Efficient and Quicker Flight Rerouting
- Reduces Delays, Turn Backs and Diversions

Value
First Radar
Certified to the FAA Enhanced Turbulence Minimum Operating Performance Standards (MOPS)
Advanced, forward-looking weather detection and avoidance capability
- Improved turbulence identification
- Detects hazards along flight path
- Look ahead function when maneuvering

Value
Lower Fuel Costs
- >30% Weight Reduction Over Existing Military Radars
 Lower system-installed weight reduces mission fuel consumption

Value
Reduced Maintenance Costs
- +80% Increase Mean Time Between Unscheduled Removal (MTBUR)
 - Reduces Unit Removals
 - Minimizes Spares
 - Decreases Operational Delays

Value
8000+ Hours Mean Time Between Failure
System uses direct drive, DC brushless mechanical drive with coaxial rotary joints, and a solid-state transmitter design to improve operational uptime.