

Quad LVDS Differential Line Driver Radiation Hardened 3.3V SOI CMOS

Features

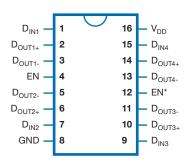
- Four Independent Drivers
- Rad Hard: 300k Rad(Si) Total Dose
- Single +3.3 V Supply
- Common Driver Enable Control
- Three-state Outputs
- Temperature Range: -55°C to 125°C
- Minimum Differential Output Signal: 250mV
- Maximum Operating Frequency: 100MHz
- Low Power

The HXLVDSD dissipates less than 300mW with all outputs toggling at a data rate of 100MHz.

Common Receiver
 Enable Control (EN, EN*)

The EN and EN* inputs allow the user to put the digital outputs into high impedance three-state mode.

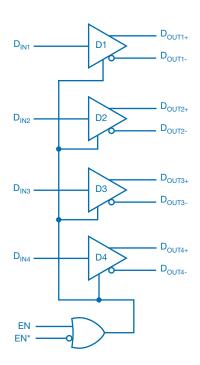
Space Qualified Package


The HXLVDSD is packaged in a 16 lead ceramic flat pack.

The HXLVDSD is a radiation hardened quad differential line driver with high impedance outputs. It features four independent drivers with a common driver enable control and high impedance outputs. The HXLVDSD along with the HXLVDSR provide an alternative to high power devices for high speed point to point interface applications.

The HXLVDSD is a radiation hardened SOI-IV Silicon On Insulator (SOI) process with very low power consumption.

The input of the HXLVDSD allows for easy interfacing to space and military imaging, sensor, and communications systems.


Pin Diagram

Pin Description

Pin	Symbol	Signal Type	Buffer Definition
1	D _{IN1}	I	CMOS
2	D _{OUT1+}	0	LVDS
3	D _{OUT1-}	0	LVDS
4	EN	1	CMOS
5	D _{OUT2-}	0	LVDS
6	D _{OUT2+}	0	LVDS
7	D _{IN2}	1	CMOS
8	GND	GND	GND/VSS = 0V
9	D _{IN3}	1	CMOS
10	D _{OUT3+}	0	LVDS
11	D _{OUT3-}	0	LVDS
12	EN*	1	CMOS
13	D _{OUT4-}	0	LVDS
14	D _{OUT4+}	0	LVDS
15	D _{IN4}	I	CMOS
16	V_{DD}	PWR	V_{DD}

Block Diagram

Truth Table

ENA	ABLES	INPUT	DIFF O	UTPUT
EN	EN*	DIN	DOUT+	DOUT-
L	Н	Х	Z	Z
Н	X	L	L	Н
X	L	L	L	Н
Н	X	Н	Н	L
X	L	Н	Н	L

Signal Definition

Signal	Definition
EN, EN*	EN and EN* are the common enable control signals. As shown in the truth table, the
	combination of EN = L and EN * = H puts the outputs into the high impedance state.
	The outputs are enabled for all other combinations of EN and EN*.
D _{INx} (x=1,2,3,4)	CMOS Data Inputs
$D_{OUTx+}, D_{OUTx-} (x=1,2,3,4)$	LVDS inverting and non-inverting outputs

The HXLVDSD is a radiation hardened quad differential line driver designed for applications requiring low power dissipation and high data rates. The HXLVDSD accepts 3.3V CMOS input voltage levels and translates them into low voltage differential (LVDS) output

levels. The EN and EN* inputs allow active Low or active High control of the high impedance outputs. The enable signals are common to all four drivers. The dual enable scheme allows for flexibility in turning devices on or off.

Absolute Maximum Ratings (1)

			Lim	its	
Parameter	Symbol	Conditions	Min	Max	Units
Supply Voltage	V_{DD}	_	-0.5	+4.6	V
DC Input Voltage	D _{IN}	-	-0.5	V _{DD} +0.5	V
DC Output Voltage	D _{OUT+} , D _{OUT-}	_	-0.5	V _{DD} +0.5	V
Enable Input Voltage	(EN, EN*)	_	-0.5	V _{DD} +0.5	V
Input Diode Clamp Current	I _{IK}	$V_{IN} < 0-V_{TH_diode}$ or			
		$V_{IN} > V_{DD} + V_{TH \text{ diode}}$	-42	+42	mA
Short Circuit I High (max) LVDS Output	I _{OSH1}	V _{DD} = 3.6 V	-16	-	mA
Shorted to Complement Output, (2)					
Short Circuit I Low (max) LVDS Output	I _{OSL1}	V _{DD} = 3.6 V	-	+16	mA
Shorted to Complement Output, (2)					
Short Circuit I High (max) LVDS Output	I _{OSH2}	$V_{DD} = 3.6 \text{ V},$	-27	-	mA
Shorted to Ground, (2)		V _{OUT} = Ground			
Short Circuit I Low (max) LVDS Output	I _{OSL2}	$V_{DD} = 3.6 \text{ V},$	_	+27	mA
Shorted to VDD, (2)		$V_{OUT} = V_{DD}$			
Maximum Continuous Current per Output Pin	_	_	-19.5	+19.5	mA
DC Output Current, per Pin	Io	$V_{OUT} = 0$ to V_{DD}	-50	+50	mA
Thermal Resistance, Junction to Case	$\theta_{ m JC}$	-	-	+22.2	°C/W
Storage Temperature Range	T _{STG}	_	-65	+150	°C
Lead Temperature (Soldering, 10 sec.)	T _{LMAX}	-	-	+300	°C
Junction Temperature	TJ	_	_	+175	°C
ESD (Human Body Model)	_	-	-	2000	V

⁽¹⁾ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

⁽²⁾ One output at a time should be shorted and the maximum junction temperature should not be exceeded. It should be tested for a maximum of 1 second.

Recommended Operating Conditions (1)(2)

		Lin	nits		
Parameter	Symbol	Min	Max	Units	
Supply Voltage	V _{DD}	+3.0	+3.6	V	
Case Temperature	T _C	-55	+125	°C	
High Level Input Voltage, VDD = 3.0 V to 3.6 V	V _{IH}	0.7V _{DD}	-	V	
Low Level Input Voltage, VDD = 3.0 V to 3.6 V	V _{IL}	_	0.3V _{DD}	V	
Input Voltage	V _{IN}	-0.3	$V_{DD} + 0.3$	V	

⁽¹⁾ Specifications listed in datasheet apply when used under the Recommended Operating Conditions unless otherwise specified. (2) All unused inputs of the device must be held at VDD or Ground to ensure proper device operation.

Electrical Requirements

			Lim	its	
Parameter	Symbols	Conditions	Min	Max	Units
Differential Output Voltage Min (LVDS Outputs)	V _{OD1}	$V_{DD} = 3.0 \text{ V}, R_L = 100 \pm 1\% \Omega$	250	_	mV
Differential Output Voltage Max (LVDS Outputs)	V _{OD2}	$V_{DD} = 3.6 \text{ V}, R_L = 100 \pm 1\% \Omega$	_	550	mV
Change in Magnitude of VOD1 for Complementary					
Output States (LVDS Outputs), (1)	$\triangle V_{OD1}$	$R_L = 100 \pm 1\% \Omega$	-	50	mV
Offset Voltage Min (LVDS Outputs)	V _{OS1}	V_{DD} = 3.0 V, R_L = 100 ±1% Ω	_	1.4	V
Offset Voltage Max (LVDS Outputs)	V _{OS2}	$V_{DD} = 3.6 \text{ V}, R_L = 100 \pm 1\% \Omega$	1.1	_	V
Change in Magnitude of VOS for Complementary					
Output States (LVDS Outputs), (1)	△V _{OS}	$R_L = 100 \pm 1\% \Omega$	_	50	mV
Output High Voltage (LVDS Outputs)	V _{OH1}	V_{DD} = 3.0 V, R_L = 100 ±1% Ω	_	1.850	V
Output High Voltage (LVDS Outputs)	V _{OH2}	$V_{DD} = 3.6 \text{ V}, R_{L} = 100 \pm 1\% \Omega$	-	1.850	V
Output Low Voltage (LVDS Outputs)	V _{OL1}	V_{DD} = 3.0 V, R_L = 100 ±1% Ω	0.800	_	V
Output Low Voltage (LVDS Outputs)	V _{OL2}	$V_{DD} = 3.6 \text{ V}, R_L = 100 \pm 1\% \Omega$	0.800	_	V
Input High Voltage (CMOS Inputs)	V_{IH}	For D_{IN} , EN, and EN*, $V_{DD} = 3.6 \text{ V}$	_	2.52	V
Input Low Voltage (CMOS Inputs)	V _{IL}	For D_{IN} , EN, and EN*, $V_{DD} = 3.0 \text{ V}$	0.9	_	V
Input Current (CMOS Inputs)	I _{IH}	$V_{IN} = V_{DD}$, for D_{IN} , EN, and EN*, $V_{DD} = 3.6 \text{ V}$	-10	+10	μΑ
	I _{IL}	$V_{IN} = GND$, for D_{IN} , EN, and EN*, $V_{DD} = 3.6 \text{ V}$	-10	+10	
Power-off Leakage	I _{OFF}	$V_{OUT} = 2.4V, V_{DD} = GND$	-10	+10	μΑ
Output Power-Down State	I _{OZL}	$EN = GND$ and $EN^* = V_{DD}$, $V_{DD} = 3.6$ V, $VO = 0$ V	-10	+10	μΑ
	I_{OZH}	$EN = GND$ and $EN^* = V_{DD}$, $V_{DD} = 3.6$ V, $VO = V_{DD}$	-10	+10	
Static Supply Current, Drivers Enabled (all differential	I _{DDL}	$\rm V_{DD}$ = 3.6 V, $\rm R_{L}$ = 100 ±1% $\Omega,$ All Channels, $\rm D_{IN}$ = $\rm V_{DD}$ or GND,	-	51	mA
outputs are loaded, no toggle at inputs)					
Standby Supply Current, Driver Disabled	I _{DDSB}	V_{DD} =3.6 V, EN = GND, EN* = V_{DD} , Vin=0V	-	5	mA
Dynamic Supply Current, Drivers Enabled (2)	V _{DD} = 3.6 \	/, All outputs loaded with 100 Ohm loads, all outputs toggling. $CL = 85$	5pF		
	I _{DDOP1}	1 MHz	-	62	mA
	I _{DDOP2}	10 MHz	-	65	mA
	I _{DDOP3}	50 MHz	-	77	mA
	I _{DDOP4}	100 MHz	-	81	mA

⁽¹⁾ Guaranteed but not tested.

Radiation Hardness Ratings (1)

Parameter	Symbol	Environment Conditions	Limits	Units
Total Dose	TID		300	krad(Si)
Transient Dose Rate Upset	DRU	Pulse width ≤ 20ns	1x10 ⁹	rad(Si)/s
Dose Rate Survivability	DRS	Pulse width ≤ 20ns	1 x10 ¹²	rad(Si)/s
Neutron Fluence		1MeV equivalent energy	1 x10 ¹⁴	N/cm ²

⁽¹⁾ Device will not latch up due to any of the specified radiation exposure conditions.

⁽²⁾ Refer to reference load circuit diagram.

Radiation Characteristics

Total Ionizing Radiation Dose

The device radiation hardness assurance TID level was qualified by ⁶⁰Co testing, including overdose and accelerated annealing, per MIL-STD-883 Method 1019. Ongoing assurance is provided by wafer level X-ray testing during manufacturing.

Transient Dose Rate Ionizing Radiation

Many aspects of product design are addressed to handle the high energy levels associated with the transient dose rate events. The device will maintain basic functional operation during exposure to a pulse up to the DRU specification. The device will meet functional, timing and parametric specifications after exposure to a pulse up to the DRS specification.

Neutron Irradiation Damage

SOI CMOS is inherently tolerant to damage from neutron irradiation. The device meets functional and timing specifications after exposure to the specified neutron fluence.

Latchup

The device will not latchup when exposed to any of the above radiation environments when applied under recommended operating conditions. SOI CMOS provides oxide isolation between adjacent PMOS and NMOS transistors and eliminates any potential SCR latchup structures.

Capacitance Parameters (1)

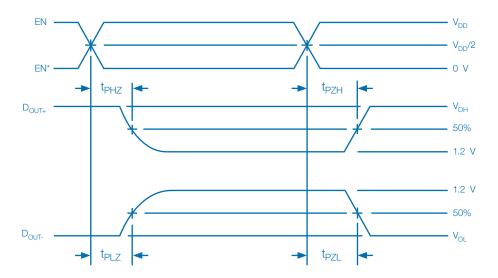
			Lim	its	
Parameter	Symbols	Conditions	Min	Max	Units
Input Capacitance (CMOS Inputs)	C _I		_	12	pF
Output Capacitance (LVDS outputs) (2)	C _O		_	17	pF

⁽¹⁾ Guaranteed but not tested.

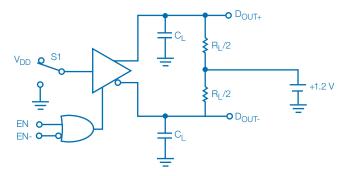
Switching Parameters

			Lim	its	
Parameter	Symbols	Conditions	Min	Max	Units
Driver output jitter (1) (2)	t _{PWD1}	Data	-	350	ps
Driver output jitter with power supply distortion, (1) (2)	t _{PWD2}	Data	_	400	ps
Driver output jitter (1) (2)	t _{PWD1}	Clock	_	7	ps
Driver output jitter with power supply distortion, (1) (2)	t _{PWD2}	Clock	_	80	ps
Differential Propagation Delay High to Low	t _{PHLD}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$	0.8	3.6	ns
Differential Propagation Delay Low to High	t _{PLHD}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$	0.8	3.7	ns
Differential Pulse Skew tPHLD - tPLHD , (1)	t _{SKD}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$	0.0	0.5	ns
Differential Channel-to-Channel Skew, (1)	∆sk _{cc}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$	0.0	0.5	ns
Differential Part to Part Skew, (1)	∆SK _{PP1}	$R_L = 100 \pm 1\% \Omega$,			
		C _L = 10 pF	0.0	1.0	ns
Differential Part to Part Skew, (1)	∆SK _{PP2}	$R_L = 100 \pm 1\% \Omega$,			
		C _L = 10 pF	0.0	1.3	ns
LVDS Output Rise Time, 20%-80% of signal swing, (1)	t _R	$R_L = 100 \pm 1\% \Omega$			
		C _L = 10 pF	_	1.5	ns
LVDS Output Fall Time, 20%-80% of signal swing, (1)	t _F	$R_L = 100 \pm 1\% \Omega$,			
		C _L = 10 pF	_	1.5	ns
Disable Time High to Z	t _{PHZ}	$R_L = 100 \pm 1\% \Omega$, $C_L = 10 pF$		5.0	ns
Disable Time Low to Z	t _{PLZ}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$		5.0	ns
Enable Time Z to High	t _{PZH}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$	0.8	8.5	ns
Enable Time Z to Low	t _{PZL}	$R_L = 100 \pm 1\% \Omega, C_L = 10 pF$	0.8	7.0	ns
Maximum Operating Frequency	f _{MAX}			100	MHz
Maximum Operating Frequency	f _{MAX}			100	MHz

⁽¹⁾ Guaranteed but not tested by vendor.


- a. Driver CMOS input signal transition time of 1 ns, 10%-to-90% for a 0V-V $_{\rm DD}$ waveform.
- b. Driver differential output is terminated with $Z_{load} = 100~\Omega \pm 1\%$ resistor, between (p) and (n) output, and $C_{load} = 10~pF$ from each output to ground.
- c. For Data jitter measurement, apply a minimum of 250 Pseudo Random Bit Stream (PRBS) bits, at 25 Mbps rate, with no more than 10 consecutive non-transitioning bits in the data stream, at transmitter CMOS input, and measure peak-to-peak data jitter across 100 Ω resistor at LVDS output.

⁽²⁾ Capacitance with respect to ground looking into LVDS output.

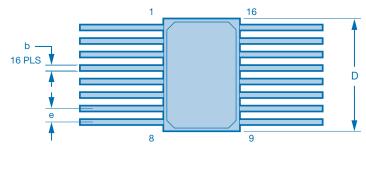

⁽²⁾ Maximum LVDS Driver Jitter performance is guaranteed between -5°C and 125°C case temperature, between 3.0 V and 3.6 V; and pre- and post-radiation.

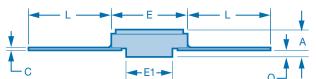
d. For Clock jitter measurement, apply a 50 MHz clock at LVDS driver CMOS input, and measure RMS Time Interval Error (TIE) jitter on rising edge of the LVDS driver output.

Timing Diagram

Reference Load Circuit

The load diagram is for reference only.


Signal Integrity


As a general design practice, for digital input signals, one should have good signal integrity which means input signals that are free of noise, glitches and ringing with rising and falling edges of \leq 10ns. More specifically, an input is considered to have good signal

integrity when the input voltage monotonically traverses the region between VIL and VIH in ≤10ns.

Floating inputs for an extended period of time is not recommended.

Package Outline Dimensions

	Dimensions - Inches		Dimensions - N	Millimeters
Symbol	Min	Max	Min	Max
Α	.101	.125	2.57	3.18
b	.015	.019	0.38	0.48
С	.004	.007	0.11	0.18
D	.392	.408	9.96	10.36
е	.047	.053	1.20	1.34
E	.274	.286	6.96	7.26
E1	.185	.196	4.70	4.96
L	.320	.360	8.13	9.14
Q	.022	.032	0.56	0.82

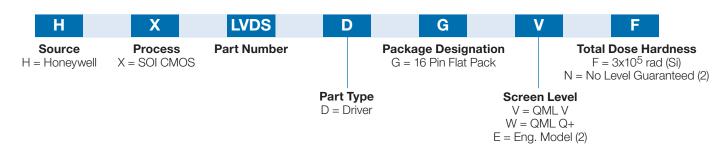
Reliability

For many years Honeywell has been producing integrated circuits that meet the stringent reliability requirements of space and defense systems. Honeywell has delivered hundreds of thousands of QML parts since the early 1990's. Using this proven approach Honeywell will assure the reliability of the products manufactured with the SOI CMOS process technology. This approach includes adhering to Honeywell's Quality Management Plan for:

- Designing in reliability by establishing electrical rules based on wear out mechanism characterization performed on specially designed test structures (electromigration, TDDB, hot carriers, bias temperature instability and radiation).
- Utilizing a structured and controlled design process.
- Statistically controlling wafer fabrication process with a continuous defect reduction process.
- Performing individual wafer lot acceptance through process monitor testing (includes radiation testing).
- · Using characterized and qualified packages.
- Performing thorough product testing program based on MIL-PRF-38535 and MIL-STD 883.

Screening and Conformance Inspection

The product test flow includes screening units with the applicable flow (Engineering Model, QML V, QML Q, Class V and Q equivalent) and the appropriate periodic or lot conformance testing (Groups A, B, C, D, and E). Both the wafer process and the products are subject to periodic or lot based Technology Conformance Inspection (TCI) and Quality Conformance Inspection (QCI) tests as defined by Honeywell's Quality Management Plan.


Conformance Summary

Group A	General Electrical Tests
Group B	Mechanical - Resistance to Solvents, Bond Strength,
	Die Shear, Solderability
Group C	Life Tests – 1000 hours at 125°C or equivalent
Group D	Package Related Mechanical Tests - Physical Dimensions, Lead
	Integrity, Thermal Shock, Temp Cycle, Moisture Resistance, Seal,
	Mechanical Shock, Vibration, Acceleration, Salt Atmosphere,
	Internal Water Vapor, Adhesion of Lead Finish
Group E	Radiation Tests

Ordering Information

Standard Microcircuit Drawing

The HXLVDSD can be ordered under the SMD drawing 5962-07A02.

- (1) Orders may be faxed to 763-954-2051. Please contact our Customer Service Representative at 1-763-954-2474 for further information.
- (2) Engineering Device Description: Parameters are tested -55°C to 125°C, 24 hour burn-in, no radiation hardness guaranteed.

QCI Testing (1)

Classification	QCI Testing
QML Q+	No lot specific testing performed. (2)
QML V	Lot specific testing required in accordance with MIL-PRF-38535 Appendix B.

- (1) QCI groups, subgroups and sample sizes are defined in MIL-PRF38535 and the Honeywell QM Plan. Quarterly testing is done in accordance with the Honeywell QM Plan.
- (2) If customer requires lot specific testing, the purchase order must indicate specific tests and sample sizes.

Honeywell reserves the right to make changes of any sort without notice to any and all products, technology and testing identified herein. You are advised to consult Honeywell or an authorized sales representative to verify that the information in this data sheet is current before ordering this product. Absent express contract terms to the contrary, Honeywell does not assume any liability of any sort arising out of the application or use of any product or circuit described herein; nor does it convey any license or other intellectual property rights of Honeywell or of third parties.

Find out more

To learn more about Honeywell's radiation hardened integrated circuit products and technologies, visit www.honeywellmicroelectronics.com/

Honeywell Aerospace

Honeywell 12001 Highway 55 Plymouth, MN 55441 Tel: 800-323-8295

www.honeywellmicroelectronics.com/

