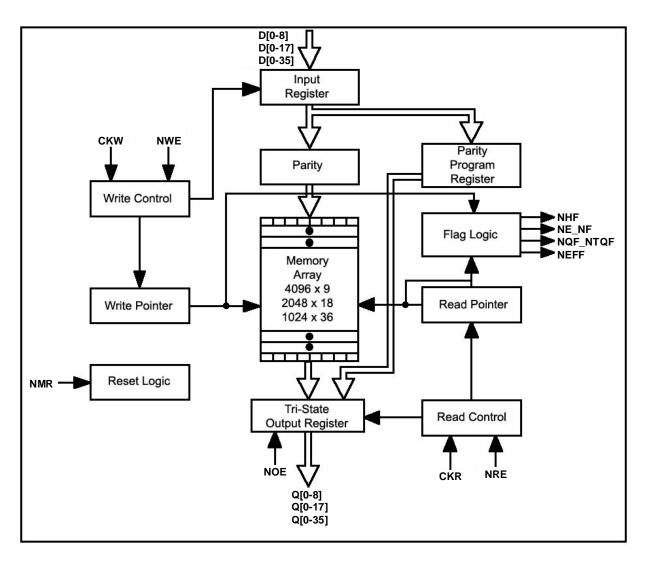

Honeywell

HX6409/HX6218/HX6136 First-In First-Out Memory

The HX6409, HX6218, and HX6136 are high speed, low power, first-in first-out (FIFO) memories with clocked read and write interfaces. The HX6409 is a 4096-word by 9-bit memory array; the HX6218 is a 2048-word by 18-bit memory array; and the HX6136 is a 1024-word by 36-bit memory array. The FIFOs support width expansion while depth expansion requires external logic control using state machine techniques. Features include programmable parity control, an empty/full flag, a quarter/three quarter full flag, a half full flag and an error flag. The FIFOs are fabricated with Honeywell's radiation-hardened technology. They are designed for use in systems operating in radiation environments. The FIFOs operate over the full military temperature range and require only a single 5V power supply. The FIFOs are available with either TTL or CMOS compatible I/O. They are available in package form.

Honeywell's FIFOs provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.

Honeywell's enhanced SOI RICMOS[™] IV (Radiation Insensitive CMOS) technology is radiation hardened through the use of advanced and proprietary design, layout, and process hardening techniques. The RICMOS[™] IV process is a 5V, SOI CMOS technology with a 150 angstrom gate oxide and a minimum drawn feature size of 0.8um.


The memory cell is single event upset hardened, while multi-layer metal power busing and small collection volumes of SOI provides superior single event effect and dose rate hardening.

FEATURES

- 1K x 36, 2K x 18, 4K x 9 Configurations
- Fabricated with RICMOS[™] IV Silicon on Insulator (SOI)
- 0.8um Process (Leff = 0.65um)
- High Speed
 36ns Typical Write Cycle
 36ns Typical Read Cycle
- Fully Asynchronous Between Read / Write Clock Domains
- CMOS or TTL Compatible I/O

- Expandable in Width
- Empty, Full, 1/2 Full, 1/4 Full, 3/4 Full, Error Flags
- Parity Generation/Checking
- Output Enable (OE)
- Total Dose 1x10⁶ rad(Si)
- Soft Error Rate 1x10⁻¹⁰ upsets/bit-day
- Neutron Irradiation 1x10¹⁴ n/cm²
- Dose Rate Upset 1x10⁹ rad(Si)/s

- Dose Rate Survivability 1x10¹¹ rad(Si)/s
- Latchup Immune
- VDD Power Supply 5V
- Operating Temperature Range -55°C to +125°C
- Package Options 32-Lead CFP 68-Lead CQFP 132-Lead CQFP

SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM

PIN NAME DEFINITIONS

Pin	I/O	Definition
Name	Туре	
D[0-35]	IN	Data Inputs: Data Inputs are written into the FIFO on the rising edge of CKW when NWE is low and the FIFO is not full.
Q[0-35]	OUT	Data Outputs: Data Outputs are read out of the FIFO on the rising edge of CKR when NRE is low and the FIFO is not Empty. The Data Outputs are in a high impedance state if NOE is high.
NWE	IN	Negative Write Enable: An active low signal that enables the write on the CKW rising edge if FIFO is not full.
NRE	IN	Negative Read Enable: An active low signal that enables the read on the CKR rising edge if FIFO is not empty.
CKW	IN	Write Clock: The rising edge clocks data into the FIFO when NWE is low. On the rising edge, this signal also updates the Half Full, 3/4 Full, Full, and Full Fault Flags.
CKR	IN	Read Clock: The rising edge clocks data out of the FIFO when NRE is low. On the rising edge, this signal also updates the Empty, 1/4 Full and Empty Fault Flags.
NHF	OUT	Negative Half Full Flag: Indicates that the FIFO is >1/2 full. Updated on the rising edge of CKW exclusively.
NE_NF	OUT	Negative Empty or Full Flag: Empty is updated on the rising edge of CKR when the FIFO is $\leq 1/2$ full, and Full is updated on the rising edge of CKW when the FIFO >1/2 full.
NQF_NTQF	OUT	Negative 1/4 Full or 3/4 Full Flag: 1/4 Full is updated on the rising edge of CKR when the FIFO is \leq 1/2 full, and 3/4 Full is updated on the rising edge of CKW when the FIFO is $>$ 1/2 full.
NEFF	OUT	Negative Empty or Full Fault Flag: empty Fault is updated on the rising edge of CKR, and Full Fault is updated on the rising edge of CKW. Empty Fault signifies a read to an already empty FIFO, and Full Fault signifies a write to an already full FIFO. Once a fault condition is detected, the Fault Flag remains latched until the empty or full condition is removed.
NMR	IN	Negative Master Reset: Asynchronous active low signal which, when low, resets the FIFO to an empty condition.
NOE	IN	Negative Output Enable: Asynchronous active low signal which, when low, enables Data Outputs.

READ TRUTH TABLE

NRE	CKR	NOE	NMR	Mode	Flags Updated	Q Mode
Н	L	Х	Н	Deselected	No	High-Z
Н	Н	Х	Н	Deselected	No	High-Z
Н	×	Х	Н	Deselected	Yes	High-Z
L	×	L	Н	Read	Yes	Data Out
L	×	Н	н	Read Standby	Yes	High-Z

WRITE TRUTH TABLE

NWE	CKW	NOE	NMR	Mode	Flags Updated	Q Mode	D Mode
Н	L	Х	Н	Deselected	No	See Read Truth Table	Disabled
Н	Н	Х	Н	Deselected	No	See Read Truth Table	Disabled
Н	×	Х	Н	Deselected	Yes	See Read Truth Table	Disabled
L	5	Х	Н	Write	Yes	See Read Truth Table	Data In
Н	Х	Х	L	Master Reset	Yes	Data Out = X	Disabled
L	<u>,</u>	L	L	Parity Programming	Yes	Parity Out	Parity In

FLAG DECODE TABLE

NE	_NF	NQF_	NTQF	N	HF	FIFO			
Output	Update	Output	Update	Output	Update	State	4K x 9	2K x 18	1K x 36
State	Control	State	Control	State	Control				
0	CKR	0	CKR	1	CKW	Empty	0	0	0
1	CKR	0	CKR	1	CKW	≤1/4 full	1 to 1024	1 to 512	1 to 256
1	CKR	1	CKR	1	CKW	≤1/2 full	1025 to 2048	513 to 1024	257 to 512
1	CKW	1	CKW	0	CKW	>1/2 full	2049 to 3071	1025 to 1535	513 to 767
1	CKW	0	CKW	0	CKW	≥3/4 full	3072 to 4095	1536 to 2047	768 to 1023
0	CKW	0	CKW	0	CKW	Full	4096	2048	1024

PROGRAMMABLE PARITY MODE OPTIONS (1)

D2	D1	D0	Conditions
0	Х	Х	Parity Disabled (2)
1	0	0	Generate Even Parity, Q8, Q17, Q26, Q35 (3)
1	0	1	Generate Odd Parity, Q8, Q17, Q26, Q35 (3)
1	1	0	Check for Even Parity, Error on Q8, Q17, Q26, Q35, Error = Low (3)
1	1	1	Check for Odd Parity, Error on Q8, Q17, Q26, Q35, Error = Low (3)

(1) There is one parity bit for each 8-bit byte.

Q8 is parity bit for Q[0-7] Q17 is parity bit for Q[9-16] Q26 is parity bit for Q[18-25] Q35 is parity bit for Q[27-34]

(2) D8, D17, D26, D35 and Q8, Q17, Q26, Q35 can be used as data bits.

(3) D8, D17, D26, D35 are ignored and these pins must be connected to VSS.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rat	ings	Unit
		Min	Max	
VDD	Positive Supply Voltage Referenced to VSS	-0.5	6.5	V
VIO	Voltage on Any Input or Output Pin Referenced to VSS	-0.5	VDD + 0.5	V
IOUT	Average Output Current		25	mA
TSTORE	Storage Temperature	-65	150	°C
TSOLDER (2)	Soldering Temperature		270	°C
PD (3)	Package Power Dissipation		2.5	W
PJC	Package Thermal Resistance (Junction to Case)		5.0	°C/W
VHBM	Electrostatic Discharge Protection Voltage (Human Body Model)	2000		V
TJ	Junction Temperature		175	°C

(1) Stresses in excess of those listed above may result in immediate permanent damage to the device. These are stress ratings only and operation at these levels is not implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.

(2) Maximum soldering temperature can be maintained for no more than 5 seconds.

(3) IDDSB power + IDDOP power + Output driver power due to external loading must not exceed this specification.

RECOMMENDED OPERATING CONDITIONS (1)

Symbol	Parameter		Limits Typ Max 5.0 5.5 25 125 VDD + 0.3		Unit
		Min	Тур	Max	
VDD	Positive Supply Voltage Referenced to VSS	4.5	5.0	5.5	V
TC	Case Temperature	-55	25	125	°C
VIO	Voltage on Any Input or Output Pin Referenced to VSS	-0.3		VDD + 0.3	V

(1) Specifications listed in datasheet apply when operated under the Recommended Operating Conditions unless otherwise specified.

		·/		
Symbol	Parameter	Environment Conditions	Limits (2)	Unit
TID	Total Ionizing Dose, R-Level		1x10 ⁵	rad(Si)
	Total Ionizing Dose, F-Level		3x10 ⁵	rad(Si)
	Total lonizing Dose, H-Level		1x10 ⁶	rad(Si)
DRU	Transient Dose Rate Upset	Pulse width ≤20ns	1x10 ⁹	rad(Si)/s
DRS	Transient Dose Rate Survivability	Pulse width ≤20ns	1x10 ¹¹	rad(Si)/s
SER (2)	Projected Soft Error Rate	Geosynchronous orbit during solar minimum non-flare conditions behind 100mil Aluminum shield	1x10 ⁻¹⁰	upsets/bit-day
	Neutron Irradiation Damage	1 MeV equivalent energy	1x10 ¹⁴	n/cm ²

RADIATION HARDNESS RATINGS (1)

(1) Device will not latchup when exposed to any of the specified radiation environments.

(2) Calculated using CREME96.

RADIATION CHARACTERISTICS

Total Ionizing Dose Radiation

The SRAM radiation hardness assurance TID level was qualified by ⁶⁰Co testing, including overdose and accelerated annealing, per MIL-STD-883 Method 1019. Ongoing assurance is provided by wafer level X-ray testing during manufacturing.

Single Event Soft Error Rate

Special process, memory cell, circuit and layout design considerations are included in the SRAM to minimize the impact of heavy ion and proton radiation and achieve small projected SER. These techniques sufficiently harden the SRAM such that cell redundancy and scrubbing are not required to achieve the projected SER.

Transient Dose Rate Ionizing Radiation

Many aspects of product design are addressed to handle the high energy levels associated with the transient dose rate events. This allows the SRAM to be capable of writing, reading, and retaining stored

PIN CAPACITANCE (1)

Symbol	Parameter	Max	Unit
CIN	Input Capacitance	7	pF
COUT	Output Capacitance	9	рF

(1) Maximum capacitance is verified as part of initial qualification only.

data during and after exposure to a transient dose rate ionizing radiation pulse, up to the DRU specification. The SRAM will also meet functional and timing specifications after exposure to a transient dose rate ionizing radiation pulse up to the DRS specification.

Neutron Irradiation Damage

SOI CMOS is inherently tolerant to damage from neutron irradiation. The SRAM meets functional and timing specifications after exposure to the specified neutron fluence.

Latchup

The SRAM will not latchup when exposed to any of the above radiation environments when applied under recommended operating conditions. SOI CMOS provides oxide isolation between adjacent PMOS and NMOS transistors and eliminates any potential SCR latchup structures.

Symbol		Parameter	Conditions		Max	Unit
IDDSB		Static Supply Current	VIH = VDD, VIL = VSS, Q = High-Z		1	mA
IDDOP (1))(2)(3)	Dynamic Supply Current Selected	VIH = VDD, VIL = VSS, Q = High-Z, CKR = CKW = 1MHz	4k x 9 2k x 18 1k x 36	8 9 12	mA mA mA
IDDOP (1))(2)(3)	Dynamic Supply Current Selected	VIH = VDD, VIL = VSS, Q = High-Z, CKR = CKW = 27MHz	4k x 9 2k x 18 1k x 36	280 330 500	mA mA mA
IDDOPD	(1)(2)	Dynamic Supply Current Deselected	VIH = VDD, VIL = VSS, NWE = NRE = VIH, CKR = CKW = 1MHz, All other inputs = static		1	mA
IDDOPD	(1)(2)	Dynamic Supply Current Deselected	VIH = VDD, VIL = VSS, NWE = NRE = VIH, CKR = CKW = 27MHz, All other inputs = static		24	mA
IDR		Data Retention Supply Current	VDD = 2.5V		500	uA

POWER PIN ELECTRICAL CHARACTERISTICS

(1) All inputs switching. DC average current.

(2) All dynamic operating mode current measurements (IDDOPx) exclude standby mode current (IDDSB). The total power is the sum of the power from the standby current (IDDSB), dynamic current (IDDOPx) and output driver current driving the output load.

(3) Data inputs are switching at one half the clock speed.

SIGNAL PIN ELECTRICAL CHARACTERISTICS (1)

Symbol	Parameter		Conditions	Min	Max	Unit
IIN	Input Leakage Current		VSS ≤ VIN ≤ VDD	-1	1	uA
IOZ	Output Leakage Current		Q = High-Z	-10	10	uA
VIL	Low-Level Input Voltage	CMOS			0.3 x VDD	V
		TTL			0.8	V
VIH	High-Level Input Voltage	CMOS		0.7 x VDD		V
		TTL		2.2		V
VOL	Low-Level Output Voltage		IOL = 4mA		0.4	V
VOH1	High-Level Output Voltage		IOH = -4mA	3.5		V
VOH2	High-Level Output Voltage		IOH = -100uA	VDD - 0.4		V

(1) Voltages referenced to VSS.

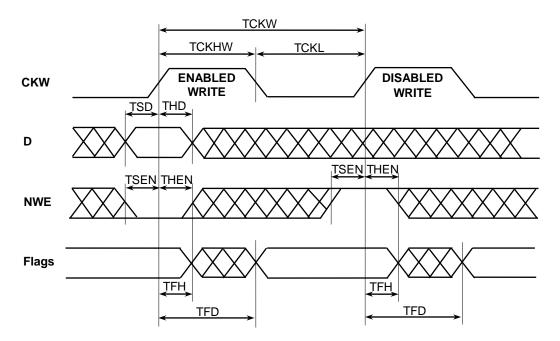
TIMING CHARACTERISTICS (1)(6)

Symbol	Parameter	Lir	nits	Unit	
		Min	Max		
TCKW (2)	Write Clock Cycle	24		ns	
TCKR	Read Clock Cycle	36		ns	
TCKHR	Clock High Read	26		ns	
TCKHW	Clock High Write	14		ns	
TCKL	Clock Low Read / Write	10		ns	
ТА	Data Access Time		30	ns	
ТОН	Previous Output Data Hold After NRE High	2		ns	
TFH (7)	Previous Flag Hold After NRE/NWE High	2		ns	
TSD	Data Setup	12		ns	
THD	Data Hold	4		ns	
TSEN	Enable Setup	8		ns	
THEN	Enable Hold	2		ns	
TOE	NOE Low to Output Data Valid		10	ns	
TOLZ	NOE Low to Output Data in Low-Z	1		ns	
TOHZ	NOE High to Output Data in High-Z		10	ns	
TFD (7)	Flag Delay		19.3	ns	
TSKEW1 (3)(5)	Non-controlling Clock after Controlling Clock	0		ns	
TSKEW2 (4)(5)	Non-controlling Clock before Controlling Clock	25		ns	
TPMR	Master Reset Pulse Width (Low)	25		ns	
TOHMR	Data Hold from Master Reset Low	2		ns	
TMRR	Master Reset Recovery	8		ns	
TMRF (7)	Master Reset High to Flags Valid		17	ns	
TAMR	Master Reset High to Data Outputs Low		17	ns	
TSMRP	Parity Program Mode – NMR low Set-up to CKW High	10		ns	
THMRP	Parity Program Mode – NMR High Hold from CKW High	4		ns	
ТАР	Parity Program Mode – Data Access Time		30	ns	
TOHP	Parity Program Mode – Data Hold Time from NMR High	2		ns	

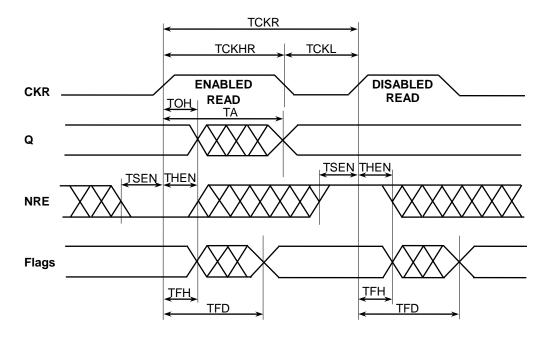
(1) The timing specifications are referenced to the Timing Input / Output References diagrams and the

Timing Reference Load Circuit diagrams. IBIS models should be used to evaluate timing under application load and conditions. (2) Guaranteed, but not tested.

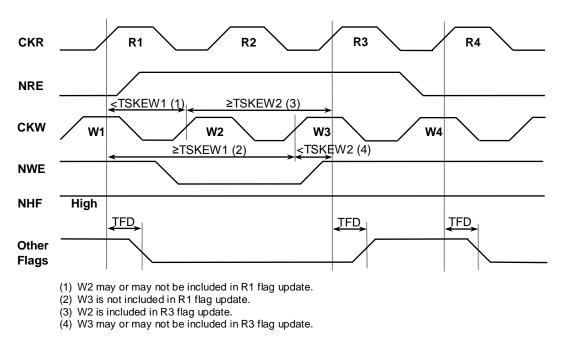
(3) For flags that are updated by both CKR and CKW (i.e., NE_NF, NQF_NTQF, NEFF) TSKEW1 is the minimum time a non-controlling clock can occur after the controlling clock and still not be included in the controlling clock cycle. At less than TSKEW1, inclusion of the noncontrolling clock in the controlling clock cycle is arbitrary.

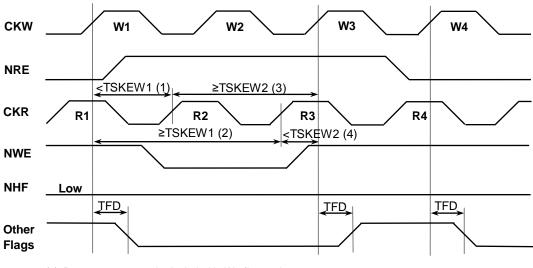

(4) For flags that are updated by both CKR and CKW (i.e., NE_NF, NQF_NTQF, NEFF) TSKEW2 is the minimum time a non-controlling clock can occur before the controlling clock and still be included in the controlling clock cycle. At less than TSKEW2, inclusion of the noncontrolling clock in the controlling clock cycle is arbitrary.

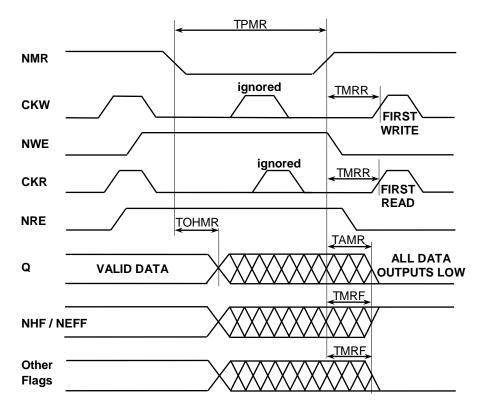
(5) The non-controlling clock is the signal which does not have update control of the flags (i.e., CKW is the non-controlling clock when the FIFO is ≤1/2 full and CKR is the non-controlling clock when the FIFO is >1/2 full). The controlling clock is the signal which has update control of the flags (i.e., CKW is the controlling clock when the FIFO is >1/2 full, and CKR is the controlling clock when the FIFO is >1/2 full.

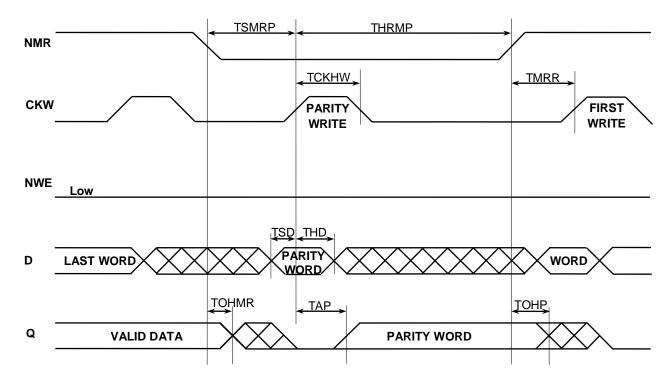

(6) Timing parameters are shown in Timing Waveforms below.

(7) Flags refers to signals: NHF, NE_NF, NQF_NTQF, NEFF.

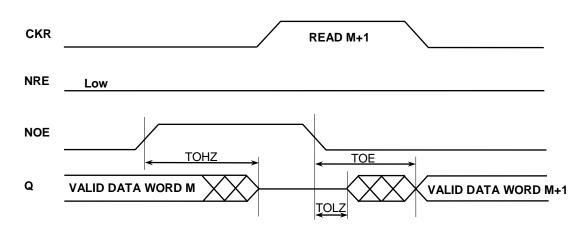

WRITE TIMING WAVEFORMS

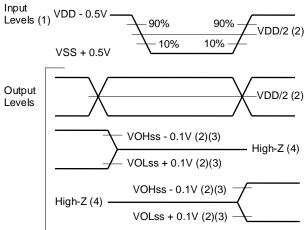

READ TIMING WAVEFORMS


FLAG UPDATE TIMING WAVEFORMS WHEN FIFO IS >1/2 FULL

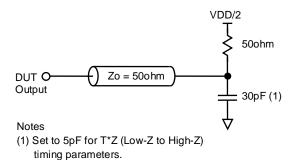

R2 may or may not be included in W1 flag update.
 R3 is not included in W1 flag update.

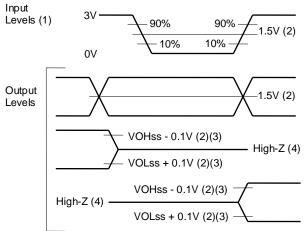
- (3) R2 is included in W3 flag update.
- (4) R3 may or may not be included in W3 flag update.


MASTER RESET TIMING WAVEFORMS


PARITY PROGRAMMING MODE TIMING WAVEFORMS

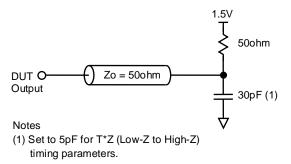
OUTPUT ENABLE TIMING WAVEFORMS


TIMING INPUT / OUTPUT REFERENCES (CMOS)


Notes

- (1) Input rise and fall times = 1ns between 90% and 10% levels.
- (2) Timing parameter reference voltage level.
- (3) ss: Low-Z VOH and VOL steady-state output voltage.
- (4) High-Z output pin pulled to VDD/2 by Reference Load Circuit.

TIMING REFERENCE LOAD CIRCUIT (CMOS)


TIMING INPUT / OUTPUT REFERENCES (TTL)

Notes

- (1) Input rise and fall times = 1ns between 90% and 10% levels.
- (2) Timing parameter reference voltage level.
- (3) ss: Low-Z VOH and VOL steady-state output voltage.
- (4) High-Z output pin pulled to 1.5V by Reference Load Circuit.

TIMING REFERENCE LOAD CIRCUIT (TTL)

FUNCTIONAL DESCRIPTION

FIFO Write / Read Operation

Writing data on the input pins (D) into the FIFO is controlled by a write clock (CKW) and a write enable pin (NWE). When NWE is asserted, data is written into the FIFO on the rising edge of the CKW signal. While NWE is held active, data is continually written into the FIFO on each CKW cycle. CKW will update the flags it controls independent of the NWE state.

Reading data from the FIFO onto the output pins (Q) is controlled by a read clock (CKR) and a read enable pin (NRE). When NRE is asserted, data is read from the FIFO on the rising edge of the CKR signal. While NRE is held active, data is continually read from the FIFO on each CKR cycle. CKR will update the flags it controls independent of the NRE state.

The read (CKR) and write (CKW) clocks may be tied together for single-clock operation or the two clocks may be run completely asynchronous to one another.

The FIFOs have an output enable pin (NOE) that controls the Low-Z and High-Z states of the Q output drivers.

The FIFOs have a master reset pin (NMR) to reset the FIFO to an empty condition. It is also used as a gateway to program the parity mode setting.

Master Reset

Upon power up, the FIFO must be reset with a Master Reset (NMR) cycle. This causes the FIFO to enter the empty condition where the Empty (NE_NF) and 1/4 Full or 3/4 Full (NQF_NTQF) flags are low, and the Half Full (NHF) and Empty or Full Fault (NEFF) flags are high. The outputs (Q) are set to low and the flags are set to the empty state TAMR/TMRF respectively after NMR goes high. During a master reset, NMR must be held low for at least TPMR and NWE and NRE are to be held high while NMR is low. Valid data is maintained for TOHMR after NMR goes low. When NMR is brought high there is a master reset recovery time (TMRR) before rising edges of CKW or CKR can occur.

Parity Programming

There is a parity bit for every 8 data bits. Parity is presented on Data Outputs: Q8, Q17, Q26 and Q35. The type of parity is programmed with the D[0-2] bits during a parity programming mode write operation. See the Programmable Parity Options Table for a description of the FIFO parity modes. Data present on D[0-2] during a parity programming mode write will determine whether the FIFO will generate or check even or odd parity for the data present on D[0-7], D[9-16], D[18-25] and D[27-34].

When parity is enabled then D8, D17, D26 and D35 inputs are ignored. If the FIFO is programmed for parity checking it will compare the parity of Q[0-7], Q[9-16], Q[18-25] and Q[27-34] to the stored parity bit and outputs the results on Q8, Q17, Q26 and Q35, respectively. High is a match, low is a mismatch.

When parity is disabled the FIFO writes all of the D input pins and the read outputs to all of the Q output pins.

A parity programming operation occurs when Master Reset (NMR) is low and Write Enable (NWE) is low. To write the parity mode word, D[0-2] into the FIFO programming register, NMR must be setup low at least TSMRP prior to the Write Clock (CKW) going high and NMR must be held low THRMP after CKW goes high. CKW must be held high for at least TCKH. The parity mode word needs to setup TSD prior to CKW going high and held THD after CKW goes high. The parity mode word is put on the Data Outputs Q[0-2] TAP after CKW goes high and the parity mode word is held TOHP after NMR goes high. When NMR is brought high there is a master reset recovery time (TMRR) before the next rising edge on CKW can occur.

Full Flag / Empty Flag

The Empty / Full Flag (NE_NF) is a combined functionality flag for specifying an empty or full FIFO. NE_NF will go low when the FIFO is empty or full and will go high when the FIFO is not empty or not full. Assessment of whether the FIFO is full or empty is done by evaluating the state of the Half Full Flag (NHF) (see Flag Decode Table).

When the FIFO is >1/2 full the NE_NF flag state is updated on the rising edge of CKW. The NE_NF flag will go low when the FIFO is written to a full condition. Write operations are inhibited whenever the FIFO is full regardless of the state of NWE. To re-enable the write requires at least one read cycle followed by one CKW cycle to reset the NE_NF flag to a non-full state after which a write is no longer inhibited. A full FIFO that is read will be described as full until either CKW goes high or the FIFO becomes $\leq 1/2$ full. Transitioning between full and almost full flag states requires a clock cycle on CKW to update the flag to the current state. The flag is updated independent of the state of NWE; so a data write is not necessary to

update the flags to correctly describe the state of the FIFO.

When the flags indicate the FIFO is full even though data has been read from the FIFO, two CKW cycles are required to write data into the FIFO. The first CKW cycle clears the NE_NF flag to indicate the FIFO is not full and to stop inhibiting writes. The second CKW cycle with NWE low inputs the data. The first CKW cycle is the latent or flag update cycle since it does not alter the data in the FIFO or the count (number of words in the FIFO). It simply updates the NE_NF flag. In order for the NE_NF flag to update appropriately for the non-full condition the read cycle must occur at least TSKEW2 before the latent or flag update cycle in order to guarantee that the read will be included in the count when CKW is cycled to update NE_NF.

When the FIFO is ≤1/2 full the NE_NF flag state is updated on the rising edge of CKR. The NE_NF flag will go high when the FIFO is read to an empty condition. Read operations are inhibited whenever the FIFO is empty regardless of the state of NRE. To re-enable the read requires at least one write cycle followed by one CKR cycle to reset the NE_NF flag to a non-empty state after which a read is no longer inhibited. An empty FIFO that is written will be described as empty until either CKR goes high or the FIFO becomes >1/2 full. Transitioning between empty and almost empty flag states requires a clock cycle on CKR to update the flag to the current state. The flag is updated independent of the state of NRE; so a data read is not necessary to update the flags to correctly describe the state of the FIFO.

When the flags indicate the FIFO is empty even though data has been written to the FIFO, two CKR cycles are required to read data from the FIFO. The first CKR cycle clears the NE_NF flag to indicate the FIFO is not empty and to stop inhibiting reads. The second CKR cycle with NRE low outputs the data. The first CKR cycle is the latent or flag update cycle since it does not alter the data in the FIFO or the count (number of words in the FIFO). It simply updates the NE_NF flag. In order for the NE_NF flag to update appropriately for the non-empty condition the write cycle must occur at least TSKEW2 before the latent or flag update cycle in order for the FIFO to guarantee that the write will be included in the count when CKR is cycled to update NE_NF.

Half Full Flag

The Half Full Flag (NHF) is a functionality flag for $\leq 1/2$ full or >1/2 full. NHF will go low when the FIFO is >1/2 full and will go high when the FIFO is $\leq 1/2$ full. NHF is updated exclusively on the rising edge of CKW.

1/4 Full / 3/4 Full Flag

The 1/4 Full / 3/4 Full Flag (NQF_NTQF) is a combined functionality flag for $\leq 1/4$ full and $\geq 3/4$ full. NQF_NTQF will go low when the FIFO is $\leq 1/4$ full or $\geq 3/4$ full and will go high when the FIFO is not $\leq 1/4$ full or $\geq 3/4$ full. Assessment of whether the FIFO is $\leq 1/4$ full or $\geq 3/4$ full is done by evaluating the state of the Half Full Flag (NHF) (see Flag Decode Table). NQF_NTQF is updated on the rising edge of CKR if the FIFO is $\leq 1/2$ full and is updated on the rising edge of CKW if the FIFO is >1/2 full (see Flag Decode Table).

Empty or Full Fault Flag

The Empty or Full Fault Flag (NEFF) is a combined functionality flag for Empty or Full faults. An Empty fault signifies a read to an already empty FIFO, and a full fault signifies a write to an already full FIFO. NEFF will go low when either of these fault conditions occurs. NEFF is updated on the rising edge of CKR if the FIFO is empty and NEFF is updated on the rising edge of CKW if the FIFO is full.

Signal Integrity

As a general design practice, one should have good signal integrity which means input signals that are free of noise, glitches and ringing with rising and falling edges of ≤10ns. More specifically, an input is considered to have good signal integrity when the input voltage monotonically traverses the region between VIL and VIH in ≤10ns. This is especially important in a selected and enabled state. When the device is selected and enabled, the last transitioning input for the desired operation must have good signal integrity to maintain valid operation. The transitioning inputs that bring the device into and out of a selected and enabled state must also have good signal integrity to maintain valid operation. When the device is deselected and/or disabled, inputs can have poor signal integrity and even float as long as the inputs that are defining the deselected and/or disabled state stay within valid VIL and VIH voltage levels. However, floating inputs for an extended period of time is not recommended.

RELIABILITY

For many years Honeywell has been producing integrated circuits that meet the stringent reliability requirements of space and defense systems. Honeywell has delivered hundreds of thousands of QML parts since first becoming QML qualified in 1990. Using this proven approach Honeywell will assure the reliability of the products manufactured with the SOI CMOS process technology. This approach includes adhering to Honeywell's Quality Management Plan for:

- Designing in reliability by establishing electrical rules based on wear out mechanism characterization performed on specially designed test structures (electromigration, TDDB, hot carriers, bias temperature instability and radiation).
- Utilizing a structured and controlled design process.
- Statistically controlling wafer fabrication process with a continuous defect reduction process.
- Performing individual wafer lot acceptance through process monitor testing (includes radiation testing).
- Using characterized and qualified packages.
- Performing thorough product testing program based on MIL-PRF-38535 and MIL-STD 883.

SCREENING AND CONFORMANCE INSPECTION

The product test flow includes screening units with the applicable flow (Engineering Model, Class V or equivalent, Class Q or equivalent) and the appropriate periodic or lot Conformance Testing (Groups A, B, C, D, and E). Both the wafer process and the products are subject to periodic or lot based Technology Conformance Inspection (TCI) / Quality Conformance Inspection (QCI) tests as defined by Honeywell's Quality Management Plan.

Conformance Summary

Group A	General Electrical Tests
Group B	Mechanical – Resistance to Solvents, Bond Strength, Die Shear, Solderability
Group C	Life Tests - 1000 hours at 125C or equivalent
Group D	Package Related Mechanical Tests – Physical Dimensions, Lead Integrity, Thermal Shock, Temp Cycle, Moisture Resistance, Seal, Mechanical Shock, Vibration, Acceleration, Salt Atmosphere, Internal Water Vapor, Adhesion of Lead Finish
Group E	Radiation Tests

PACKAGE FEATURES

Feature	Description	Description	Description		
Designation	Т	D	F		
Туре	32-lead flat pack	68-lead flat pack	132-lead flat pack		
Body Construct	multi-layer	multi-layer	multi-layer		
	ceramic (Al ₂ O ₃)	ceramic (Al ₂ O ₃)	ceramic (Al ₂ O ₃)		
VDD, VSS Planes	Yes	Yes	Yes		
Lid Construct	Kovar	Kovar	Kovar		
Lid Electrical Connection	VSS	VSS	VSS		
VDD to VSS Chip Capacitors (Caps) (1)	4 x 0.039uF	User Option (1)	-		

(1) Default configuration is without package capacitors.

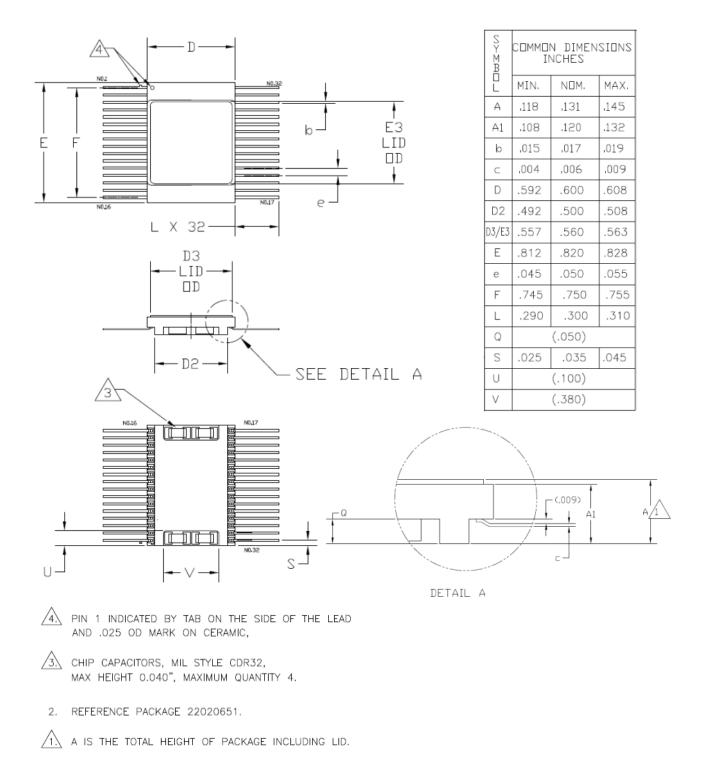
Contact Honeywell for part ordering information if capacitors are desired.

PIN LIST FOR HX6409

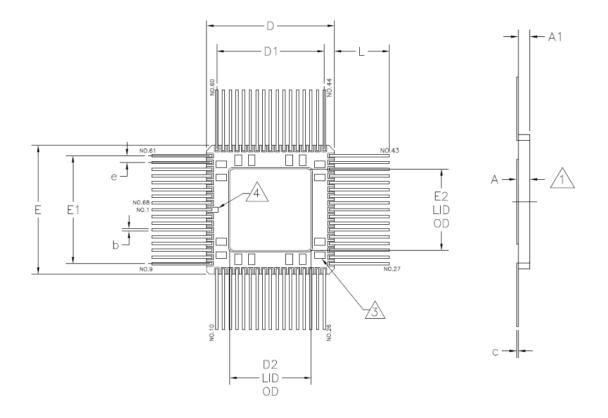
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	VSS	7	Q5	13	NQF_NTQF	19	NRE	25	D6	31	D0
2	Q0	8	Q6	14	NHF	20	CKW	26	D5	32	VDD
3	Q1	9	Q7	15	NE_NF	21	NWE	27	D4		
4	Q2	10	Q8	16	VSS	22	NMR	28	D3		
5	Q3	11	NOE	17	VDD	23	D8	29	D2		
6	Q4	12	NEFF	18	CKR	24	D7	30	D1		

PIN LIST FOR HX6218

Pin	Signal											
1	CKR	13	D17	25	VSS	37	Q1	49	Q11	61	VSS	
2	NRE	14	D16	26	D8	38	Q2	50	Q12	62	VDD	
3	CKW	15	D15	27	D7	39	Q3	51	Q13	63	NOE	
4	NWE	16	D14	28	D6	40	Q4	52	VDD	64	NEFF	
5	NMR	17	VDD	29	D5	41	Q5	53	VSS	65	NQF_NTQF	
6	VDD	18	VSS	30	D4	42	Q6	54	Q14	66	NHF	
7	VSS	19	D13	31	D3	43	Q7	55	Q15	67	NE_NF	
8	VSS	20	D12	32	D2	44	Q8	56	Q16	68	VDD	
9	VSS	21	D11	33	D1	45	VSS	57	Q17			
10	VDD	22	D10	34	D0	46	VDD	58	VDD			
11	VDD	23	D9	35	VDD	47	Q9	59	VDD			
12	VDD	24	VDD	36	Q0	48	Q10	60	VDD			

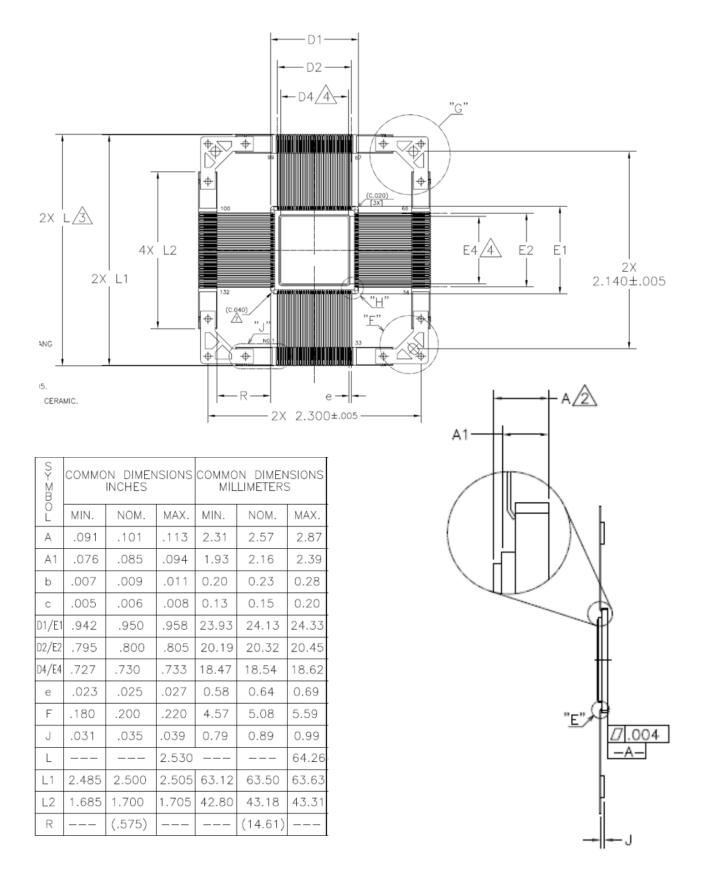

PIN LIST FOR HX6136

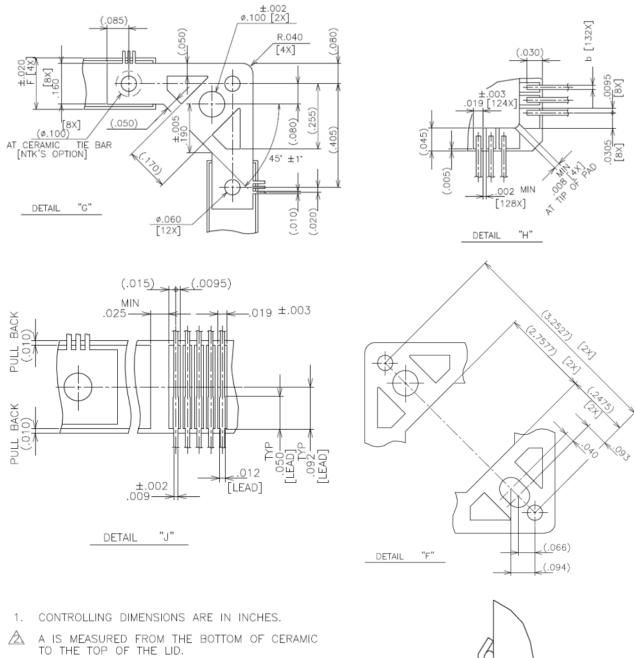
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	VSS	23	CKW	45	NC	67	VSS	89	Q2	111	Q19
2	NC	24	NC	46	D25	68	NC	90	NC	112	Q20
3	NC	25	NWE	47	NC	69	D8	91	Q3	113	NC
4	NC	26	NC	48	D24	70	D7	92	NC	114	Q21
5	NOE	27	NMR	49	VSS	71	D6	93	Q4	115	VDD
6	NC	28	NC	50	VDD	72	NC	94	Q5	116	VSS
7	NEFF	29	NC	51	D23	73	D5	95	Q6	117	Q22
8	NQF_NTQF	30	NC	52	D22	74	D4	96	Q7	118	Q23
9	NHF	31	NC	53	D21	75	D3	97	Q8	119	Q24
10	NC	32	NC	54	D20	76	NC	98	NC	120	Q25
11	NE_NF	33	VSS	55	D19	77	D2	99	VSS	121	Q26
12	NC	34	VDD	56	D18	78	NC	100	VDD	122	Q27
13	NC	35	D35	57	D17	79	D1	101	Q9	123	Q28
14	NC	36	D34	58	D16	80	NC	102	Q10	124	NC
15	NC	37	D33	59	D15	81	D0	103	Q11	125	Q29
16	VSS	38	D32	60	D14	82	VSS	104	Q12	126	Q30
17	VDD	39	D31	61	D13	83	VDD	105	Q13	127	Q31
18	NC	40	D30	62	D12	84	NC	106	Q14	128	Q32
19	CKR	41	D29	63	D11	85	Q0	107	Q15	129	Q33
20	NC	42	D28	64	D10	86	NC	108	Q16	130	Q34
21	NRE	43	D27	65	D9	87	Q1	109	Q17	131	Q35
22	NC	44	D26	66	VDD	88	NC	110	Q18	132	VDD


NC pin must be connected to VSS.

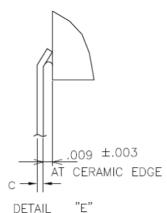
PACKAGE DIAGRAMS

32-Lead Flat Pack, Designation = T


68-Lead Flat Pack, Designation = D



- A. PIN 1 INDICATED BY LARGER LEAD PAD.
- A PADS FOR OPTIONAL CHIP CAPACITORS, MIL STYLE CDR32, MAXIMUM QUANTITY 8.
- 2. REFERENCE PACKAGE 22019075.
- \triangle A IS THE TOTAL HEIGHT OF PACKAGE INCLUDING LID.


SYMBO	COMMON DIMENSIONS INCHES								
L	MIN.	NOM.	MAX.						
A	.082	.091	.101						
A1	.072	.080	.088						
b	.016	.018	.020						
С	.008	.010	.012						
D/E	.940	.950	.965						
D1/E1	.792	.800	.808.						
D2/E2	.602	.605	.608						
е		.050 TYP.							
L	.400 .410 .420								

132-Lead Flat Pack, Designation = F

- A DIMENSION L INCLUDES MAXIMUM LEAD TIP OVERHANG
- $\underline{\mathbb{A}}$ dimensions D4 and E4 are lid dimensions.
- 5. NOT APPLICABLE.
- 6. TOLERANCES UNLESS OTHERWISE SPECIFIED: $\pm.005$.
- A PIN 1 INDICATED BY LARGER CORNER CHAMFER IN CERAMIC.

ORDERING INFORMATION (1)

Order Code							
	Н	Χ	6409	D	S	Н	С
SOURCE							
H = Honeywell							
PROCESS							
X = SOI							
PART NUMBER							
6409 = 4k x 9							
6218 = 2k x 18							
6136 = 1k x 36							
PACKAGE DESI	GNAT	ON					
D = 68 Lead C	QFP (3	3)					
F = 132 Lead (
T = 32 Lead CI	FP						
SCREEN LEVEL							
S = Non-QML (Class L	evel S					
B = Non-QML (Class L	_evel B					
E = Engineerin	g Mode	el (2)					
TOTAL DOSE H		ESS					
$R = 1x10^{5}$ rad(8)							
$F = 3x10^{5}$ rad(8							
$H = 1x10^{6} rad(3)$							
N = No Level G	Suarant	eed					
INPUT BUFFER	TYPE						
C = CMOS							

C = CMOS

T = TTL

- (1) Orders may be faxed to 763-954-2051.
- Please contact our Customer Service Representative at 763-954-2474 or 1-800-323-8295 for further information. (2) Engineering Model Description: Screen Level and Total Dose Hardness codes must be "E" and "N" respectively.
- Parameters are tested -55°C to 125°C, 24 hour burn-in, no radiation hardness guaranteed.
- (3) Default configuration is without package capacitors. Contact Honeywell for ordering information if capacitors are desired.

FIND OUT MORE

For more information about Honeywell's family of radiation hardened integrated circuit products and services, visit www.honeywellmicroelectronics.com.

Honeywell reserves the right to make changes of any sort without notice to any and all products, technology and testing identified herein. You are advised to consult Honeywell or an authorized sales representative to verify that the information in this data sheet is current before ordering this product. Absent express contract terms to the contrary, Honeywell does not assume any liability of any sort arising out of the application or use of any product or circuit described herein; nor does it convey any license or other intellectual property rights of Honeywell or of third parties.

Honeywell International Inc. 12001 Highway 55 Plymouth, MN 55441 1-800-323-8295 www.honeywellmicroelectronics.com Honeywell

ADS-14134 Rev. E August 2014 ©2014 Honeywell International Inc.

